Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Radiative recombination of carriers in the GaxIn1-xP/GaAs double-junction tandem solar cells

Identifieur interne : 000123 ( Chine/Analysis ); précédent : 000122; suivant : 000124

Radiative recombination of carriers in the GaxIn1-xP/GaAs double-junction tandem solar cells

Auteurs : RBID : Pascal:13-0119390

Descripteurs français

English descriptors

Abstract

Radiative recombination of carriers in two kinds of Gaxln, -xP/GaAs double-junction tandem solar cell structures was investigated by using room-temperature electroluminescence (EL) and photoluminescence (PL) techniques. Efficient radiative recombination was observed simultaneously in the top and the bottom subcells in both the samples. By studying the behavior of EL and PL spectra, the radiative recombination intensity ϕEL was demonstrated to be reliant on the material-dependent radiative recombination coefficient, base layer doping concentration and thickness. Furthermore, dependence of ϕEL on substrate misorientation in both the subcells was also evidenced, which was explained in terms of the growth-induced variations in microstructure for the GaInP top cell and in potential barrier profile across the p-n junction for the GaAs bottom cell. Based on these observations, the radiative recombination in the two base layers of the subcells was demonstrated to be the major carrier loss mechanism in the GaxIn1-xP/GaAs double-junction tandem photovoltaic devices and should be suppressed.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0119390

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Radiative recombination of carriers in the Ga
<sub>x</sub>
In
<sub>1-x</sub>
P/GaAs double-junction tandem solar cells</title>
<author>
<name sortKey="Deng, Z" uniqKey="Deng Z">Z. Deng</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and HKU-CAS Joint Laboratory on New Material, University of Hong Kong, Pokfulam Road</s1>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
<wicri:noRegion>Department of Physics and HKU-CAS Joint Laboratory on New Material, University of Hong Kong, Pokfulam Road</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, R X" uniqKey="Wang R">R. X. Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences</s1>
<s2>Suzhou 215123</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Suzhou 215123</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ning, J Q" uniqKey="Ning J">J. Q. Ning</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and HKU-CAS Joint Laboratory on New Material, University of Hong Kong, Pokfulam Road</s1>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
<wicri:noRegion>Department of Physics and HKU-CAS Joint Laboratory on New Material, University of Hong Kong, Pokfulam Road</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zheng, C C" uniqKey="Zheng C">C. C. Zheng</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and HKU-CAS Joint Laboratory on New Material, University of Hong Kong, Pokfulam Road</s1>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
<wicri:noRegion>Department of Physics and HKU-CAS Joint Laboratory on New Material, University of Hong Kong, Pokfulam Road</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bao, W" uniqKey="Bao W">W. Bao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and HKU-CAS Joint Laboratory on New Material, University of Hong Kong, Pokfulam Road</s1>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
<wicri:noRegion>Department of Physics and HKU-CAS Joint Laboratory on New Material, University of Hong Kong, Pokfulam Road</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, S J" uniqKey="Xu S">S. J. Xu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and HKU-CAS Joint Laboratory on New Material, University of Hong Kong, Pokfulam Road</s1>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
<wicri:noRegion>Department of Physics and HKU-CAS Joint Laboratory on New Material, University of Hong Kong, Pokfulam Road</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences</s1>
<s2>Suzhou 215123</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Suzhou 215123</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, X D" uniqKey="Zhang X">X. D. Zhang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences</s1>
<s2>Suzhou 215123</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Suzhou 215123</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lu, S L" uniqKey="Lu S">S. L. Lu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences</s1>
<s2>Suzhou 215123</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Suzhou 215123</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dong, J R" uniqKey="Dong J">J. R. Dong</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences</s1>
<s2>Suzhou 215123</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Suzhou 215123</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, B S" uniqKey="Zhang B">B. S. Zhang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences</s1>
<s2>Suzhou 215123</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Suzhou 215123</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H. Yang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences</s1>
<s2>Suzhou 215123</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Suzhou 215123</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0119390</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0119390 INIST</idno>
<idno type="RBID">Pascal:13-0119390</idno>
<idno type="wicri:Area/Main/Corpus">001125</idno>
<idno type="wicri:Area/Main/Repository">000624</idno>
<idno type="wicri:Area/Chine/Extraction">000123</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Concentration effect</term>
<term>Electroluminescence</term>
<term>Gallium phosphide</term>
<term>Indium phosphide</term>
<term>Microstructure</term>
<term>Photoluminescence</term>
<term>Photovoltaic cell</term>
<term>Potential barrier</term>
<term>Radiative recombination</term>
<term>Room temperature</term>
<term>Solar cell</term>
<term>Tandem solar cell</term>
<term>Ternary compound</term>
<term>Thickness</term>
<term>p n junction</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Recombinaison radiative</term>
<term>Cellule solaire tandem</term>
<term>Température ambiante</term>
<term>Electroluminescence</term>
<term>Photoluminescence</term>
<term>Effet concentration</term>
<term>Epaisseur</term>
<term>Microstructure</term>
<term>Barrière potentiel</term>
<term>Jonction p n</term>
<term>Dispositif photovoltaïque</term>
<term>Cellule solaire</term>
<term>Composé ternaire</term>
<term>Phosphure de gallium</term>
<term>Phosphure d'indium</term>
<term>GaInP</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Radiative recombination of carriers in two kinds of Ga
<sub>x</sub>
ln,
<sub>-x</sub>
P/GaAs double-junction tandem solar cell structures was investigated by using room-temperature electroluminescence (EL) and photoluminescence (PL) techniques. Efficient radiative recombination was observed simultaneously in the top and the bottom subcells in both the samples. By studying the behavior of EL and PL spectra, the radiative recombination intensity ϕ
<sub>EL</sub>
was demonstrated to be reliant on the material-dependent radiative recombination coefficient, base layer doping concentration and thickness. Furthermore, dependence of ϕ
<sub>EL</sub>
on substrate misorientation in both the subcells was also evidenced, which was explained in terms of the growth-induced variations in microstructure for the GaInP top cell and in potential barrier profile across the p-n junction for the GaAs bottom cell. Based on these observations, the radiative recombination in the two base layers of the subcells was demonstrated to be the major carrier loss mechanism in the Ga
<sub>x</sub>
In
<sub>1-x</sub>
P/GaAs double-junction tandem photovoltaic devices and should be suppressed.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>111</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Radiative recombination of carriers in the Ga
<sub>x</sub>
In
<sub>1-x</sub>
P/GaAs double-junction tandem solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DENG (Z.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WANG (R. X.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>NING (J. Q.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ZHENG (C. C.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BAO (W.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>XU (S. J.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ZHANG (X. D.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>LU (S. L.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>DONG (J. R.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>ZHANG (B. S.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>YANG (H.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics and HKU-CAS Joint Laboratory on New Material, University of Hong Kong, Pokfulam Road</s1>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences</s1>
<s2>Suzhou 215123</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA20>
<s1>102-106</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000173215070140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0119390</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Radiative recombination of carriers in two kinds of Ga
<sub>x</sub>
ln,
<sub>-x</sub>
P/GaAs double-junction tandem solar cell structures was investigated by using room-temperature electroluminescence (EL) and photoluminescence (PL) techniques. Efficient radiative recombination was observed simultaneously in the top and the bottom subcells in both the samples. By studying the behavior of EL and PL spectra, the radiative recombination intensity ϕ
<sub>EL</sub>
was demonstrated to be reliant on the material-dependent radiative recombination coefficient, base layer doping concentration and thickness. Furthermore, dependence of ϕ
<sub>EL</sub>
on substrate misorientation in both the subcells was also evidenced, which was explained in terms of the growth-induced variations in microstructure for the GaInP top cell and in potential barrier profile across the p-n junction for the GaAs bottom cell. Based on these observations, the radiative recombination in the two base layers of the subcells was demonstrated to be the major carrier loss mechanism in the Ga
<sub>x</sub>
In
<sub>1-x</sub>
P/GaAs double-junction tandem photovoltaic devices and should be suppressed.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Recombinaison radiative</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Radiative recombination</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Recombinación radiativa</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Cellule solaire tandem</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Tandem solar cell</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Célula solar tándem</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Température ambiante</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Room temperature</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Temperatura ambiente</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Electroluminescence</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Electroluminescence</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Electroluminiscencia</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Photoluminescence</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Photoluminescence</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Fotoluminiscencia</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Effet concentration</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Concentration effect</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Efecto concentración</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Epaisseur</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Thickness</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Espesor</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Microstructure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Microstructure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Microestructura</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Barrière potentiel</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Potential barrier</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Barrera potencial</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Jonction p n</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>p n junction</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Unión p n</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Phosphure de gallium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Gallium phosphide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Galio fosfuro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>GaInP</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>091</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000123 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000123 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0119390
   |texte=   Radiative recombination of carriers in the GaxIn1-xP/GaAs double-junction tandem solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024